
2012 National Collegiate Programming Contest

• Problems: There are 10 problems (20 pages in all, not counting this cover
page) in this packet.

• Problem Input: Input to the problems are through the input �les. Input
�lenames are given in the table below. Each input �le may contain one or
more test cases. Test cases may be separated by any delimiter as speci�ed
in the problem statements.

• Problem Output: All output should be directed to standard output (screen
output).

• Time Limit: The judges will run each submitted program with certain
time limit (given in the table below).

Table 1: Problem Information Sheet

Problem Name Input File Time Limit
Problem A String Editor pa.in 3 secs.
Problem B Integer Partition pb.in 5 secs.
Problem C Matrix pc.in 5 secs.
Problem D A Matrix Decipher pd.in 3 secs.
Problem E Hostage Rescue pe.in 15 secs.
Problem F Optimal Transformation Cost pf.in 3 secs.
Problem G SHA-4 pg.in 3 secs.
Problem H Gap Veri�cation ph.in 5 secs.
Problem I Christmas Gifts pi.in 3 secs.
Problem J The Resequencing LCS Problem pj.in 15 secs.

I

Problem A
String Editor
Input File: pa.in

Time Limit: 3 seconds

Prof. Chiu teaches English at Not-Simplifying-Your-Sentence University (NSYS U. for
short). Everyday he needs to correct the sentences written by students. In order to let the
students know their mistakes, Prof. Chiu always tells students how to revise the sentences
instead of only giving them the correct ones. To this aim, he gives a series of editing
commands for a wrong sentence. Most of his students can realize the editing commands and
obtain the correct revision. But misunderstandings somehow happen occasionally.

To help the students of NSYN U., you are asked to design a string editing program.
For a given sentence and a series of editing commands, the program can print the resulting
sentence. To make the commands clear, we use a cursor and all the commands are executed
at the cursor position. The following editing commands should be supported, in which c
denotes the current position of the cursor, n is a positive integer, and s is a string. Initially
the cursor is at the �rst (left-most) position (c = 0).

Table 2: Editing Commands
Command Operations

<< Backspace, i.e., delete the character left to the cursor.
If c = 0, then do nothing.

<[n] Shift cursor left by n characters. If c < n, c is set to be 0.
>[n] Shift cursor right by n characters.

Blanks will be appended if necessary.
�[s] Insert s at the cursor position and the cursor position

will be moved to the end of s.
#[s] Replace with s at the cursor position and the cursor position

will be moved to the end of s.
![n] Delete n characters from the cursor position.

Technical Speci�cation

1. The editing sentence, i.e., the sentence to be edited according to the commands, is a
string consisting of only alphanumeric characters and spaces.

2. The length of the editing sentence is at most 100.

3. The length of command string is at most 200.

Input File Format
The input �le contains several test cases. For each test case, the �rst line is the sentence to

1

be edited, and the second line is the command string.

Output Format
For each test case, output in one line the resulting sentence. Ignore any space at the end of
the sentence.

Sample Input

AK47 is powerful

>[2]^[B]>[1]#[48]

Sam sings badly

>[4]<<>[1]#[u]>[3]^[i]>[6]![2]

Apple is better than Samsung

>[3]<<<<<<^[hTC]![2]

Output for the Sample Input

AKB48 is powerful

Samsung is bad

hTC is better than Samsung

2

Problem B
Integer Partition
Input File: pb.in

Time Limit: 5 seconds

Problem Description

A new partition problem is de�ned as follows. Let the symbol P i
y,z be the number of ways

to write a positive integer y as a sum of i positive integers having the largest part no larger
than z, i.e., {

y = a1 + a2 + · · ·+ ai, and
z ≥ a1 ≥ a2 · · · ≥ ai ≥ 1.

Notice that two sums di�ering only in the order of their summands are considered to be the
same partition. For example, P 2

5,4 = 2 (can be partitioned in two distinct ways: 4+1, 3+2)
and P 2

5,3 = 1 (can be partitioned in one single way: 3+2).
Please write a program to compute the number of P i

y,z with given integers y, i, and z,
which y may be as large as up to 500.

Technical Speci�cation

1. 1 ≤ y ≤ 500
2. 1 ≤ i ≤ 30
3. 1 ≤ z ≤ 100

Input File Format

The �rst line of the input �le contains one integer m(≤ 5) indicating the number of test
cases to follow. In each of the following m lines, there are three integers y, i, and z.

Output Format

For each test case, output P i
y,z.

Sample Input

5
20 4 7
100 50 51
487 18 87
492 19 89
500 19 90

Output for the Sample Input

13
204226
7139824136004762
20430740394679891
25985433353057732

3

Problem C
Matrix

Input File: pc.in
Time Limit: 5 seconds

Given k sets, where k ≥ 2 and each set has n integers, they are said to be compatible if
a k × n matrix B can be constructed from them to meet the following two conditions:

• Each row of B is constructed from a di�erent set and is a permutation of the integers
in the corresponding set.

• For all i and j, 1 ≤ i ≤ k−1, 1 ≤ j ≤ n, bi,j is less than bi+1,j, where bi,j is the element
at the ith row and jth column of B.

For example, consider two sets {6, 3, 5} and {1, 4, 2}. The two sets are compatible because
a 2× 3 matrix B can be constructed as follows to meet the above two conditions. The �rst
row of B is from the second set and is [1 4 2], while the second row of B is from the �rst set
and is [3 6 5].

Now consider m (m ≥ 2) sets each of which has n integers. Also assume that among
the m sets, at least two of them are compatible. There are many possible ways to select k
(2 ≤ k ≤ m) sets from the m sets. Let kmax denote the largest number of sets which are
selected from the m sets and are compatible. Your task is to write a program that computes
kmax.

Technical Speci�cation

• The number of sets, m, is at least 2 and at most 2500. At least two of the m sets are
compatible. The number of integers in each of the m sets, n, is at least 1 and at most
20. Each integer in a set is at least 1 and at most 50000.

Input File Format
The �rst line of the input �le contains an integer, denoting the number of test cases to follow.
For each test case, the �rst line contains two positive integers m and n, respectively denoting
the number of sets and the number of integers in each set; in the next m lines, each line
gives n integers for a set.

Output Format
For each test case, output its kmax in a new line.

Sample Input
2
2 3
6 3 5

4

1 4 2
3 2
3 1
2 4
6 5

Output for the Sample Input

2

3

5

Problem D
A Matrix Decipher

Input File: pd.in
Time Limit: 3 seconds

Problem Statement

Let ZN = {0, 1, 2, · · · , N − 2, N − 1}, where N is a positive integer. An integer linear
transformation under (mod N) can be de�ned as

f(x) = Hx, where x ∈ Zd
N , and H ∈ ZN

d×d

That is, x is a d-dimensional column vector and H is a d by d matrix whose elements are
from ZN .

For d = 3, we have f

 x1

x2

x3

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 x1

x2

x3

 = H

 x1

x2

x3

, where hij ∈

ZN , 1 ≤ i, j ≤ 3. The inverse integer transformation exists only if gcd(det(H), N) = 1,
that is, the determinant of matrix H is relatively prime to N . This problem assumes that
N = 11.

Let Ω={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, : } be the set of 11 characters represented as numbers
0, 1, · · · , 10, respectively. A matrix encipher takes a message, a character string consisting
of 12 characters from Ω={0, 1, 2, · · · , 8, 9, : }, as input and outputs an enciphered message
of the same length based on applying an integer linear transformation successively on the
d characters in each group from the input message string. For example, for d = 3, a
message "9870::", decomposed as two groups of 3 characters, "987" and "0::", is enciphered

as "262976" based on the transformation matrix H =

1 1 1

1 2 2

1 2 3

. The corresponding

decipher takes "262976" as input associated with the integer transformation matrix H−1 =
2 10 0

10 2 10

0 10 1

 which converts "262976" back to "9870::". This problem asks you to design

a matrix decipherH−1 based on a givenmatrix encipherH to decrypt an enciphered message.

6

Input File Format

The �rst line of the input �le always contains one integer indicating the number of test cases
to come. Each of the test cases consists of d + 2 lines with d = 2 or d = 3 in the �rst line
indicating the dimension of the encipher matrix H followed by d lines of the entries of H
row by row, the (d+ 2)-th line is the input message of 12 characters.

Output Format

The output format is similar to the input format. The �rst line of the output �le contains
one integer indicating the number of test cases. Each of the test cases consists of d+ 2 lines
with d = 2 or d = 3 in the �rst line indicating the dimension of the decipher matrix H−1,
the next d lines are the entries of H−1 row by row, and the (d + 2)-th line is the decrypted
message of 12 characters.

Sample Input

2

2

2 1

3 2

6:19278694:2

3

1 1 1

1 2 2

1 2 3

26242669:976

Sample Output

2

2

2 10

8 2

224488::3377

3

2 10 0

10 2 10

0 10 1

9876543210::

7

Problem E
Hostage Rescue
Input File: pe.in

Time Limit: 15 seconds

Commander, we are in an emergent hostage situation! Jason Bourne, one of our best
special agents, got caught and imprisoned in a building with very high level security control.
Now we have two options. Option one, the government pays the ransom money and Bourne
might be released. Option two, you, as the leader of the team of special agents, lead the
team to get into the building and rescue Bourne.

The information said that the building is equipped with a laser monitoring system. This
system consists of a lot of laser devices, which are controlled by two sets of switches. Each
switch has two states, on and o�. Each laser device is controlled by one switch in the red

set and one or two switches in the green set. The laser device can be turned on by only one
combined state of the two or three controlling switches, for example, {on, o�, o�}. All other
states of the switches will turn o� the device.

The only way to rescue Bourne safely from the building is to turn o� all laser devices
in the monitoring system. By some way Bourne sent us the code book of the relationship
between the laser devices and switches. The code for a laser device is a tuple. The �rst
element is a letter, starting from A, to indicate the switches in the red set. The upper
(lower) case of the letter means the switch must be on (o�) to turn on the laser device. The
remaining two elements are integers, starting from 1, to indicate the switches in the green
set. The sign + (−) refers to that the switch must be on (o�) to turn on the laser. More
precisely, the code book is interpreted like this:

• A code �A+2− 3" means that the state {on, on, o�} of the �rst switch in the red set,
the second, and the third switches in the green set will turn on one laser device.

• A code �b− 4 + 7" means that the state {o�, o�, on} of the second switch in the red
set, the fourth, and the seventh switches in the green set will turn on one laser device.

Now we know how each laser device is turned on. (Of course, we know how to turn them
o�.) You should justify if we have any opportunity of turning o� all laser devices so that we
can rescue Bourne safely. Otherwise, the government must pay a huge amount of ransom
money to get him back.

Technical Speci�cation

• The number of switches in the red set is R, 1 ≤ R ≤ 10.

• The number of switches in the green set is G, 1 ≤ G ≤ 100.

• The number of laser devices in the monitoring system is L, 1 ≤ L ≤ 500.

Input File Format
The �rst line of the input �le contains an integer, denoting the number of test cases to fol-
low. For each test case, the �rst line contains three integers for R, G, and L, separated by

8

a space. Each of the following L lines contains one character and two integers. Each integer
is preceded by a sign symbol.

Output Format
For each test case, output Y if it is possible to turn o� all laser devices. Otherwise, output
N. Output the result for each test case in a separate line.

Sample Input

3

1 1 3

A +1 +1

a +1 +1

A -1 -1

1 1 4

A +1 +1

a +1 +1

A -1 -1

a -1 -1

2 2 9

A +1 +2

a -1 -1

b +1 +2

b +2 +2

a -2 -2

A -1 +2

A -2 -2

a +1 +1

b -2 -2

Output for the Sample Input

Y

N

N

9

Problem F
Optimal Transformation Cost

Input File: pf.in
Time Limit: 3 seconds

A mathematician, Professor Lee, is now studying a transformation scheme in Coding The-
ory. There are 2n n-bit binary strings S = {bnbn−1 . . . bi . . . b2b1| bi ∈ {0, 1} for 1 ≤ i ≤ n}.
Two strings, can be transformed each other if and only if one is bnbn−1 . . . bk+1︸ ︷︷ ︸

n−k

0 bk−1bk−2 . . . b1︸ ︷︷ ︸
k−1

and the other is bnbn−1 . . . bk+1︸ ︷︷ ︸
n−k

1 bk−1bk−2 . . . b1︸ ︷︷ ︸
k−1

, where i = 0, 1 and 1 ≤ k ≤ n (i.e., their bi-

nary strings di�er in a one-bit position only). We use x ↔ y to denote the transformation
between two strings x and y, and use cost(x, y) to denote the cost of the transformation
x ↔ y. To make the problem much easier, we assume the cost of each transformation is a
constant c.

Professor Lee aims at �nding a sequence of transformations T (S) = ⟨s1 ↔ s2 ↔ s3 ↔
· · · ↔ sm−1 ↔ sm(= s1)⟩ among S such that the following two conditions hold:

1. Every possible transformation is contained at least once by T (S).

2. The transformation cost of T (S), de�ned by
∑m−1

i=1 cost(si, si+1), is as smallest as
possible.

The minimum transformation cost of T (S) is called the optimal transformation cost, denoted
by cost(T (S)). For example, consider S = {000, 001, 010, 011, 100, 101, 110, 111} and assume
that c = 1. Then, T (S) = ⟨000↔ 001↔ 011↔ 010↔ 000↔ 100↔ 101↔ 001↔ 101↔
111 ↔ 011 ↔ 111 ↔ 110 ↔ 010 ↔ 110 ↔ 100 ↔ 000⟩ and cost(T (S)) = 16. Note that
T (S) may not be unique, but cost(T (S)) is unique.

Given a positive integer n and the cost of each transformation c, your task is to write a
computer program to calculate the optimal cost cost(T (S)).

Technical Speci�cation

• 2 ≤ n ≤ 20.

• 1 ≤ c ≤ 100.

Input File Format
The �rst line of the input �le contains an integer, denoting the number of test cases to follow.
For each test case, one line contains two integers n and c separated by a space.

Output Format
For each test case, output the optimal cost.

Sample Input

10

2
3 1
2 1

Output for the Sample Input
16
4

11

Problem G
SHA-4

Input File: pg.in
Time Limit: 3 seconds

This is a new hash algorithm invented for NCPC 2012, called SHA4 (simple hash algo-
rithm version 4). Given a message string M, the SHA4 will hash the string into a 160 bits
value, called the message digest d.

d = SHA4(M), where SHA4 is the hash function

We will give you the SHA4 algorithm and several hashed results of message digests:
d0, d1, d2, You are to write a program to �nd the original message M0,M1,M2, ... such
that

d0 = SHA4(M0), d1 = SHA4(M1), d2 = SHA4(M2), ...

Pseudocode for the SHA4 algorithm is listed in the following:

Algorithm 1: SHA4

Input: M [0..4]: �ve characters
Output: digest: �ve 32 bits hexadecimal values

/* initialized variables: 0x means the values are in hexadecimal

format */

1 h0← 0xdead; h1← 0xcafe; h2← 0xbeef ; h3← 0x3399; h4← 0x7788;
2 a← h0; b← h1; c← h2; d← h3; e← h4;
3 for i ← 0 to 4 do
4 word[i] = M [i]−' ';

/* The ASCII value of space is subtracted from the input character

*/

5 f ← b+ c; k ← 0x5a82;
6 temp← 4 ∗ a+ f + e+ k + word[i];
7 e← d; d← c; c← 8 ∗ b; b← a; a← temp;

8 h0← h0 + a; h1← h1 + b; h2← h2 + c; h3← h3 + d; h4← h4 + e; /* produce the

final hash value: */

9 digest ← h0 append h1 append h2 append h3 append h4;
/* C like code: */

/* printf("%08x %08x %08x %08x %08x", h0, h1, h2, h3, h4) */

Note:

1. All variables are unsigned 32 bits integers.

2. The input string M is with length 5.

12

3. Each input character M[i] is converted into an integer value, by subtracting ASCII
value of space from the ASCII value of M[i], that is, the di�erence between space and
the character ASCII value. For example, the space value is 0.

4. After the value conversion, the �ve bytes values are stored in word[i], 0 ≤ i < 5.

Technical Speci�cation

• The number of test cases is less than 1024.

• All output strings are with length 5.

Input File Format
The �rst line of the input �le contains an integer, denoting the number of test cases to
follow. For each test case, the message hash digest is given with values of �ve 32 bits integer
in hexadecimal format, each integer separated with at least one space. For example, a sample
digest is 0b8414f6 027eeb13 0453edaf 00f93379 002f2d88. All digest values are valid SHA4
outputs.

Output Format
For each test case, output the original message with one line of string, containing only �ve
alphanumeric characters (A-Za-z0-9). For example, you are to output '5dogs' if the input is
SHA4('5dogs')='0b8414f6 027eeb13 0453edaf 00f93379 002f2d88'.

Sample Input
4
0b8414f6 027eeb13 0453edaf 00f93379 002f2d88
0b8419b0 027eec17 0453ef3f 00f933f1 002f2da8
0b8459a5 027efa02 045406� 00f93981 002f2f10
0b845578 027ef91a 04540577 00f93921 002f2ef8

Output for the Sample Input

5dogs

9cats

fade4

cafe8

13

Problem H
Gap Veri�cation
Input File: ph.in

Time Limit: 5 seconds

There is a software industry called EDA (Electronic Design Automation) which produces
software tools for IC hardware engineers to help manufacturing ICs. Manufacturing a chip
must go through several phases. Each phase may need help from several software tools. Fig.
1 shows the output from one of these software tools. In this phase, circuits and transistors
(i.e., PNP transistors or NPN transistors) are rendered as rectangles on di�erent layers of
materials.

Figure 1: The IC layout produced by an EDA software tool.

However, due to the limitation of layout algorithms, these layouts need additional ver-
i�cation and manual adjustment. One rule to check is the spacing between two rectangles
(see Fig. 2). If the spacing is less than a minimum distance, two rectangles may become
connected during wafer's micro-fabrication process. Given a set of rectangles and a spacing
rule, please write a program to �nd out the places that violates the spacing rule horizontally.

Figure 2: The spacing rule.

Fig. 3 are some boundary cases for your references. Please assume the IC layout algo-
rithms are still good enough so that rectangles never overlap themselves. In Fig. 3 (a), two
rectangles are aligned at a same Y-coordinate. In this case, the spacing rule needs to be
checked. In Fig.3(b), two rectangles do not overlap at Y-axis, so, you don't need to check
spacing rule at X-axis for the two rectangles. Although rectangles do not overlap, they can

14

Figure 3: Boundary cases.

be connected as in Fig. 3(c). In this case, your program must understand p0-p1-p2-p3 be-
long to a same region. So, you don't need to report the violation of spacing rule between
p3-p1, p3-p0, p1-p2, and p3-p2.

1. Please ignore the cases where two rectangles only touch at corner alone (such as p0

and p3 alone).

2. You only need to check the spacing rule horizontally (i.e., X-axis)

Input Format

The test data begins with an integer N(N < 10), which is the number of test cases. In each
test case, it begins with two integers P and S. P is the number of rectangles (P ≤ 50001) and
S(0 < S < 1000) is the minimum spacing distance that your program needs to check. If the
distance of two rectangles is less or equal than S, the violation must be reported. Following
is P lines of rectangle information. Each rectangle is described by (index x y width length).
index (an integer in the range from 0 to P − 1) is identi�cation of a rectangle. (x, y) is the
top-left corner coordinates (2D plane coordinates which can be held by long integers). width
is the size of a rectangle on X-axis and length is the size of a rectangle on Y-axis.

Output Format

For each test case, please output the places where two rectangles violate the spacing rule
in X-axis. The violation place is output as �(p1 p2)� where p1 < p2 are the indexes of the
rectangles. If there are multiple violations to report, please sort the violations by p1 �rst
in ascending order. Then please sort the violations with same p1 by p2 in ascending order.
There is no space between two violation places.

Sample Input

2

5 15

0 0 0 10 20

1 10 30 30 10

2 10 20 10 10

15

3 30 20 10 20

4 20 -10 10 10

5 15

0 0 0 10 20

1 10 50 30 10

2 10 20 10 10

3 30 20 10 20

4 20 -10 10 10

Sample Output

(0 4)

(0 4)(2 3)

16

Problem I
Christmas Gifts
Input File: pi.in

Time Limit: 3 seconds

Children always expect gifts at Christmas Eve. Every child in the community No-
Common-Present-Compromise (NCPC for short) can have two wishes for toys, and Santa
Claus always promises at least one of the two wishes. Children in NCPC are all unsel�sh
such that a toy can be shared by many children. This year, all the wishes have been collected
and you are asked to help Santa Claus to prepare the gifts for all the children. Due to the
limited capacity of the cart, you need to minimize the number of gifts. But remember, for
every child, at least one of the two wishes should be satis�ed.

For the example shown in the �rst test case of the Sample Input, there are four children.
The �rst child wishes to have toy 0 or 1, and the toys wished by the other three children are
respectively 100 or 1, 100 or 0, and 100 or 200. For this case, you can prepare only two toys
(0 and 100) to satisfy all the four children.

Technical Speci�cation

1. Every wish is a toy and labeled by an nonnegative integer at most 10000.

2. The number n of di�erent toys is at most 250.

3. The number m of children is a positive integer and at most 5000.

4. For each test case, n ≤ 100 or m ≤ 400.

Input File Format
The input �le contains several test cases. For each test case, the �rst line contains the integer
m which is the number of children in this case. In the following m lines, each line contains
two integers separated by a space, in which the two integers are the toy labels the child
wishes for. A case with m = 0 indicates the end of the input and you don't need to process
it.

Output Format
For each test case, output in one line the minimum number of gifts that Santa Claus should
prepare.

Sample Input

4

0 1

17

100 1

100 0

100 200

12

10 20

20 30

30 40

40 50

50 60

60 70

70 80

80 10

10 0

30 0

50 0

70 0

0

Output for the Sample Input

2

4

18

Problem J
The Resequencing LCS Problem

Input File: pj.in
Time Limit: 15 seconds

Let X = x1x2x3 · · · xm and Y=y1y2 · · · yn be two strings over a �nite alphabet set Σ. A
subsequence of a string is obtained by deleting zero or some (not necessarily consecutive)
characters in this string. A common subsequence of X and Y is a subsequence occurring in
both X and Y . A longest common subsequence (LCS for short) of X and Y is a common
subsequence of X and Y with the maximum length.

Given a set S = {S1, S2, . . . , Sℓ} of ℓ strings, a text T , and a natural number k, �nd a
string M , which is a concatenation of k strings (not necessarily distinct, i.e., a string in S
may occur more than once in M) from S, whose length of LCS with T is largest. Such a
string is called a k-inlay. The resequencing LCS problem is to �nd the length of the LCS
between T and a k-inlay for each query with parameter k after T and S are given.

For example, let S = {agc, act, aatg, ttcg} and T = agactagtc in which S1 = agc, S2 =
act, S3 = aatg, and S4 = ttcg. If k = 2, then both S1S1 = agcagc and S1S4 = agcttcg are
2-inlays, and the length of their LCSs with T is 6. For k = 4, S1S2S1S4 = agcactagcttcg is
a 4-inlay, and the length of its LCS with T is 9.

Technical Speci�cation

• The alphabet set Σ contains all 26 English alphabets, i.e., {a, b, . . . , z}.

• The number of characters in T is no more than 500.

• The number of strings in S is no more than 50 and the length each string in S is no
more than 50.

• The number of queries is no more than 10 and, in each query, k 6 30.

Input File Format
The �rst line of the input �le contains an integer, denoting the number ℓ of strings in S.
The second line of the input �le contains an integer, denoting the number n of queries. The
third line of the input �le contains the string T . In the following ℓ + n lines, the ith line
contains a string Si for i = 1, 2, . . . , ℓ. The (ℓ + i)th line contains the value of k for the ith
query for i = 1, 2, . . . , n.

Output Format
For each query, output the length of its LCS with T on one line.

Sample Input
4

19

2
agactagtc
agc
act
aatg
ttcg
2
4

Output for the Sample Input

6

9

20

