
Problem A
Convert a Boolean Formula

Time limit: 2 seconds

In this problem, we consider two algebraic structures: Boolean algebra and finite field GF(2).

In mathematical logic, Boolean algebra is the algebra in which the values of the variables
are the truth values false or true, usually represented by 0 and 1, respectively. There are 3
operations: ∨, ∧, and ¬.

0 ∨ 0 = 0, 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1.

0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0, 1 ∧ 1 = 1.

¬0 = 1, ¬1 = 0.

Boolean formulas are formulas containing Boolean variables with operators ∨, ∧, and ¬. For
simplicity, in this problem we consider only simple Boolean formulas of the form

x1 ∨ x2 ∨ · · · ∨ xn,

where each xi is a variable or the negation of a variable. Each variable is different, and no
variable and its negation will both appear in the formula.

Since computer keyboards may not have ∨, ∧, and ¬ keys, we will replace ∨ by “+”, ∧ by
“x” and ¬ by appending a ’ after the variable.

In finite field GF(2), there are only two elements 0 and 1. The two operations in GF(2) are
+ and ×.

0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1.

0× 0 = 0× 1 = 1× 0 = 0, 1× 1 = 1.

If you are not familiar with GF(2), you can think of GF(2) as integers. After each addition
(or multiplication) of 2 integers, the final result is the remainder of the sum (or the product)
divided by 2.

A polynomial P in GF(2) is a polynomial with coefficient 0 and 1. The addition and
multiplication of 2 polynomials are the same as ordinary polynomials, except that each
final coefficient is the remainder of the coefficient divided by 2. For example,

(a + b)2 = a2 + 2ab + b2 = a2 + b2 = a + b.

Note that x2 = x in GF(2).

Let B be a Boolean formula and P be a GF(2) polynomial with the same set of variables.
B and P are equivalent, if for every assignment of the valuables, B and P always have the
same value. The following table gives a useful set of equivalent B’s and P ’s.

page 1 of 28

B P

x x
x ∨ y x + y + xy
x ∧ y xy
x′ 1 + x

Based on the above table, write a program to convert a simple Boolean formula into its
equivalent polynomial in GF(2).

Input File Format

There are more than one test cases in the input file. Each test case contains a simple Boolean
formula of n, 1 ≤ n ≤ 8, valuables in {a, b, c, d, e, f, g, h}. For simplicity, if a Boolean formula
contains n < 8 variables, the first n variables in the list a, b, c, d, e, f, g, h will be used. For
example, if n = 3, then the variables are a, b, c. Furthermore, the variables will appear in
increasing order. For example, a+ b′+ c, not b′+ a+ c or c+ a+ b′. There will be no spaces
in each input line. The last line of the input file contains a single 0. After scanning this line,
your program should stop.

Output Format

For each Boolean formula, print its equivalent polynomial in GF(2). The polynomial should
be simplified and expressed as the sum of products. For example, express a polynomial as
a + ab + ac + bc, not (a + b)(a + c). If the polynomial is a constant, print the constant.
Otherwise, follow the following rules in printing out the polynomial.

1. If the coefficient of a term is 0, do not print this term.

2. For each term with coefficient 1, print only the product of the valuables. For example,
print ab, not 1ab.

3. The product of the valuables must be printed in alphabetical order. For example, print
abc, not cab.

4. If the polynomial contains more than 1 term:

(a) Print the terms with fewer number of variables first. For example, print 1+a+ab,
not a + ab + 1.

(b) For terms with the same number of variables, print them in dictionary order. For
example, print ab + bc, not bc + ab.

(c) Insert the string “ + ” (a space followed by “+” followed by another space) be-
tween two adjacent terms.

page 2 of 28

Sample Input

a+b’

a+b+c

a’+b+c

0

Output for the Sample Input

1 + b + ab

a + b + c + ab + ac + bc + abc

1 + a + ab + ac + abc

page 3 of 28

Problem B
Extended One-Max Problem

Time limit: 2 seconds

An extended one-max problem is a problem for maximizing and minimizing the value of the
objective function f(s) of a binary string s = 〈s1, s2, . . . , sn〉, where the objective function is
defined as

f(s) = ((m mod 10) + 1)× (((B2D(s) + 1) mod (m + 1)) + 1)

where m =
n∑

i=1

si, si ∈ {0, 1}, n ≤ 20 and B2D(s) is a function for converting the binary

string s to a decimal value.

Input Format

The input is a number n representing the number of bits in the binary string s = 〈s1, s2, . . . , sn〉,
as the sample input shows.

Output Format

The output contains two binary strings sa and sb each of which is followed by its objective
value. The difference is in that the first string sa is the one with the maximum objective
value f(sa) = max f(s) while the second string sb is the one with the minimum objective
value f(sb) = min f(s), as the sample output shows.

Sample Input

3

0

Output for the Sample Input

011: 6

000: 1

page 4 of 28

Problem C
Sister Cities

Time limit: 1 second

The ACM kingdom has n cities, numbered 0, 1, . . ., n− 1, where n is even. No cities cross
the equatorial. So each city is either in the northern or southern hemisphere, but not both.

The ACM Queen wants to form sister cities. So she asks each city c to propose a list `c
of exactly 2k cities, with which c is willing to have sister city relationship. Willingness is
known to be mutual: If a city d is in `c, then c is in `d. Of course, k is a non-negative
integer specified by the ACM Queen. To facilitate communication between the northern and
southern hemispheres, `c has to contain only cities not in the hemisphere containing c, for
each city c. I.e., if c is in the northern (southern) hemisphere, then all cities in `c must be
in the southern (northern, respectively) hemisphere.

Please help the ACM Queen order all cities as c0, c1, . . ., cn−1 such that for each even number
0 ≤ i ≤ n − 2, ci and ci+1 are willing to be sister cities (i.e., ci is in `ci+1

). Sensibly, the
ordering is intended to make ci and ci+1 sister cities for each even number 0 ≤ i ≤ n − 2.
Note that c0, c1, . . ., cn−1 should be a permutation of 0, 1, . . ., n− 1.

Should two or more solutions exist, please just output one of them.

Input File Format

The first line is n, where n ≤ 100000. The second line is n · 2k−1, where k ≤ 16. For each
pair (c, d) of cities such that c and d are willing to be sister cities (i.e., c is in `d), there is
exactly one remaining line giving c and d (or, in the opposite order, d and c). Two numbers
in a line are separated by space(s).

Output Format

Order all cities as c0, c1, . . ., cn−1 such that for each even number 0 ≤ i ≤ n − 2, ci and
ci+1 are willing to be sister cities. Then output ci and ci+1 in one line, for each even number
0 ≤ i ≤ n− 2. So there should be n/2 lines of output. Note that there may be many correct
outputs.

page 5 of 28

Sample Input

10

20

9 0

9 2

9 8

9 3

1 2

1 8

3 1

4 1

8 6

6 3

6 4

0 6

5 3

5 4

5 0

5 2

7 4

0 7

2 7

8 7

Output for the Sample Input

0 7

1 4

2 5

3 9

6 8

page 6 of 28

Problem D
Multiple of 9

Time limit: 1 second

Input an array of N (1 ≤ N ≤ 105) non-negative integers where each element A[i] is a
multiple of 3 and A[i] ∈ {0, 3, 6, 9}. Please write a computer program to find the maximum
decimal number, which is a multiple of 9 by concatenating some of the array
elements.

Input File Format

This first line will be the number of the test cases.

In each test case, the first line is the number of elements N and the second line will be the
array of elements, where two consecutive elements are separated by a space.

Output Format

Output the maximal decimal number, which is a multiple of 9 and two consecutive
elements are separated by a space. The output of each test case should be placed in a
separate line. If no such solution exists, then output −1.

Sample Input

2

5

3 6 3 9 3

2

6 6

Output for the Sample Input

9 3 3 3

-1

page 7 of 28

Problem E
Spy Network

Time limit: 2 seconds

The international association C.I.A. (abbrev for Computer Intelligence Association) is in-
vited by the intelligent agency SIS to conduct a computer-aided investigation regarding the
evergrowing spying activities for Biegnij. The goal of this investigation is to discover the
exact structural information of the lurking spy network, which is an undirected graph, so
that proper countermeasure can be devised.

It is known that, in order for the spy network to remain hidden, communication of the
network is designed to be done in a rather local manner. Not a single spy agent holds
the complete information of the network. Instead, each spy agent holds a device that can
establish secure communication with the following three types of recipients: (1) the agent
himself/herself, (2) the agents he/she is connected to in the network, and (3) the agents
his/her neighboring spy agents are connected to in the network. The device owned by each
spy agent stores the list of the three types of recipients as described.

During a successful secret operation, the intelligent agents in SIS were able to access the
devices of the spy agents and acquire the complete list of recipients of each device from its
preinstalled backdoor in the government-designed software. Unfortunately, they were not
able to identify to which spy each device belongs. This says, they were not able to identify
the owner of each list. The good news is that, the top secret agent of SIS, Bomd, has revealed
in the same operation that the underlying structure of the spy network is in fact a tree.

Given the complete list of recipients of each spying device, assuming that the spy agents in
the network are indexed from 1 to n, your task in this problem is to help C.I.A. uncover the
connections(edges) of the spy network.

Input Format

The input contains multiple testcases.

The first line of each testcase consists of an integer n, where 2 ≤ n ≤ 1000, which is the
number of spy agents in the network. Then there are n lines, each of which describes the
complete list of recipients of one spying device. Each of these n lines starts with an integer,
which is the length of the list, followed by the indexes of the recipients in the list.

It is guaranteed that the input lists of each testcase correspond to a valid spy network.

A testcase starting with n = 0 indicates the end of input.

page 8 of 28

Output Format

For each testcase, print the edges of the spy networks, one at a line. Each line should describe
an edge and consist of the indexes of its endpoints, separated by a space.

Both the edges and the indexes of the endpoints of the edges can be printed in any order.
If there are multiple solutions, you may print any of them.

Sample Input

6

5 6 1 3 4 2

5 2 1 3 4 6

6 3 6 2 5 4 1

6 6 1 2 5 3 4

3 5 2 4

5 3 1 2 4 6

Sample Output for the Sample Input

2 4

1 2

2 3

2 6

4 5

page 9 of 28

Problem F
Bike Lane Planning
Time limit: 2 seconds

The NCPC Recreational bike-only park has many bike paths that connects all the interesting
places in the park. All bike paths are in parallel, meaning there are two lanes, one for biking
in each direction.

As park popularity grows, NCPC decides to introduce electric four-wheel six-passenger wagon
bikes for use within the park. However, these wagon bikes are so big that they cannot travel
on a single bike lane. Instead, it must travel on both parallel bike lanes. Therefore, all
parallel bike lanes must be changed into one-way bike lane. Direction of each road segment
(directly connecting two interesting places) can be determined independently.

Due to popular demand, some places must be reachable from some other places. Give this
set of must-reachable places, please help determine different ways to turn the parallel bike
lanes into one-way wagon bike lane while meeting the must-reachable places conditions.

For example, in the Fig. 1 below (this figure depicts the Sample Input), there are 6 parallel
bike lanes connecting 5 interesting places. If the park wants to maintain Place 4 to be
reachable from Place 2, and Place 1 to be reachable from Place 5. Then there are 4 possible
configurations as shown in Fig 2. It can be seen that only segment 3 and segment 5 must
always set to have traffic flow in the same direction regardless of the configuration; while the
other segments, may need to be set to different direction depending on the configuration.

Figure 1: 6 Parallel bike lanes connecting 5 places.

Input File Format

The first line of input is an integer indicating the number of test cases to follow. For each test
case, the first line contains 3 integers, n, m, k, indicating there are n ≤ 100, 000 interesting
places in the park (numbered from 1 to n); there are m ≤ 100, 000 road segments (numbered
from 1 to m); and there are k ≤ 100 must-reachable place pairs.

The next m lines each contains two positive integers, 1 ≤ i, j ≤ n , indicating there is road
segment (parallel bike lanes) connecting Place i and Place j.

page 10 of 28

Figure 2: Four possible configurations. Segment 3 direction must be from Place 1 to Place
2 and segment 5 direction must be from Place 5 to Place 4 in all configurations. Segment
with double arrows can be set in any direction in that particular configuration.

The next k lines each contains two positive integers, 1 ≤ i, j ≤ n , indicating Place j must
be reachable from Place i in the new configuration.

Output Format

Print “0”, “L”, or “R” for each road segment in the order of the input sequence, all on one
line. For a road segment that connects Places i and j (as indicated in the input), if in all
valid configurations, the direction is always from i to j, then output ”R”; If the direction is
always from j to i, then output ”L”; otherwise, output ”0”. For each test case, there should
be m consecutive “0”, “L”, or “R” characters on a single output line.

Sample Input

5 6 2

5 3

2 3

1 2

2 5

4 5

3 5

1 4

5 2

Sample Output for the Sample Input

00R0L0

Note: Road segment 3 (from place P1 to place P2), the direction should be “R” as in P1→P2.
For road segment 5 (from place P4 to place P5), the direction must be “L”, as in P4←P5).

page 11 of 28

Problem G
Viral Test

Time limit: 1 second

Dr. Smith accidentally discovers that the blood glucose level seems to be related to the
incidence of a new virus. He starts collecting data from his patients, including blood glucose
level and test results (positive or negative), as shown in the table below.

patient id blood glucose level test result
1 125 positive
2 100 positive
3 70 negative
4 120 positive
5 95 positive
6 60 negative
7 220 positive
8 85 negative
9 75 positive
10 90 negative

Dr. Smith believes that the results of the viral tests can be predicted based on blood glucose
levels. The prediction procedure is simple: if the blood glucose level is greater than a
threshold, a viral infection is detected (positive); otherwise no infection is found (negative)
and vice versa.

Taking data displayed in the above table as an example, the best threshold value falls between
90 and 95, because the blood glucose levels with negative test results are all lower than or
equal to 90, and those with positive test results are higher or equal to 95, except for one
(patient id: 9). Therefore, the prediction accuracy rate is 90% (9/10), which is the best
prediction result of this prediction procedure. Given patients’ data, please write a program
to help Dr. Smith determine the optimal threshold. The output of your program should be
the number of samples which are correctly predicted.

Input File Format

The test data file may contain many test cases. Each test case contains several lines. The
first line contains an integer N (1 < N < 105), indicating the number of samples. Each of
the following N lines contains one real number b (60.0 < b < 300.0) and one binary number
t, indicating the blood glucose level and test result (1: positive, 0: negative). The blood
glucose levels in each test case are distinct. The last test case is followed by a line containing
a single 0.

page 12 of 28

Output Format

The output for each test case is the number of correctly predicted samples in a best prediction
result.

Sample Input

4

80.5 1

90.5 0

100.5 0

110.5 0

10

125 1

100 1

70 0

120 1

95 1

60 0

220 1

85 0

75 1

90 0

0

Sample Output for the Sample Input

4

9

page 13 of 28

Problem H
Robot Communication Cost

Time limit: 1 second

Assume there are N robots indexed from 1 to N . Specifically, robot 1 and robot N are
stationary, and the other can move freely. Joe is the project manager, and he has M
communication records among the robots, each of which has three positive integers: i, j, t
indicating robot i initiates a communication with robot j for t seconds during a period
of time, and there will be a charge on robot i, defined by a linear integral cost function
c(t) = at+ b. Unfortunately, except robot 1 and robot N , there is no information about the
location when the robots communicated. To understand the impact of the distribution of
robots, Joe tries to properly associate the rest N − 2 robots with robot 1 or robot N . Joe
partitions the robots into two groups X and Y , one with robot 1 and the rest with robot
N . Let L be the total charge from X to Y and R be the total charge from Y to X. With a
proper partition Joe wants to minimize L−R. Your task is to write a program to help Joe
find the minimum possibility.

Technical Specification

1. 1 < N < 500

2. 1 < M < 5, 000

3. 0 < t < 1, 000

4. −10 < a < 10, 0 ≤ b < 1, 000

Input File Format

The first line of the input gives the number of test cases, T (< 10). For each case, the first
line consists of two positive integers N,M indicating the number of robots and the number of
communications made, respectively. The second line consists of two integers a, b indicating
the cost function c(x) = ax+ b. Then M lines follow, where the k-th (k = 1, . . . ,M) line has
3 positive integer i, j, t, indicating robot i communicates with j for t seconds.

Output Format

For each test case, output one line that contains the minimum value.

page 14 of 28

Sample Input

2

4 3

1 0

1 2 1

2 3 5

3 4 3

5 5

-1 10

1 2 2

2 3 3

1 3 2

2 4 1

5 2 4

Sample Output for the Sample Input

-1

-8

page 15 of 28

Problem I
Heaven’s Coin

Time limit: 3 seconds

Believe it or not, strings can save creatures to heaven. One day Angel Tenshi found a way
to save creatures to heaven. The secret is as follows. Every creature (including Tenshi) is
equipped with a unique string that records the goodness and evil of this creature. This string
is called the karma. (Of course, Tenshi’s karma only has goodness.) Let us see how Tenshi
can save a creature A to heaven. Let B be either Tenshi or a creature that was previously
saved by Tenshi. Tenshi can save A if there is a way to match a suffix of B’s karma to a
prefix of A’s karma, and in addition to this Tenshi has to spend some amount of Heaven’s
Coin in order to save A. (A match means that these two strings are exactly identical.) The
amount of Heaven’s coin that Tenshi needs for saving A is equal to the number of unmatched
characters in A’s karma. Notice that the saving order of creatures can drastically affect the
total spend of Heaven’s coin for Tenshi. Can you help Tenshi to find the minimum amount
of Heaven’s coin in order to save n creatures? For simplicity, we will use lowercase English
letters as the characters of karmas. We use Si to denote the karma of the ith creature, which
is a finite-length string. For example, let the karma of Tenshi be aaa. Suppose there are 3
creatures, namely S1 = aab, S2 = baa, and S3 = cba, that Tenshi wants to save. If Tenshi
applies the greedy strategy to save them, Tenshi would first save S1 with cost 1. Then Tenshi
will save S2 with cost 2 because there is a length-1 suffix-to-prefix overlap between S1 and
S2. Finally, Tehshi would save S3 with cost 3. The total cost is 1 + 2 + 3 = 6. However, if
Tenshi follows this order S1, S3 and S2, the cost for individual saving would be 1, 3 and 1,
respectively. Now the total cost becomes 1 + 3 + 1 = 5, which is better than the result of
the greedy strategy. This moral tells us that greed cannot open the door to heaven.

Input Format

The test data file contains at most 10 test cases. The first line of the input gives you the
number of test cases. In each test case, its first line specifies the integer n, which is the
number of creatures that Tenshi needs to save, and 1 ≤ n ≤ 500. Its second line is Tenshi’s
karma, and its third to the (n + 2)nd lines are the karmas of these creatures. A karma is a
nonempty string of English lowercase letters and its length is at most 500 characters. The
next test case follows immediately after the previous one.

Output Format

The output for each test case is the minimum amount of Heaven’s coin that Tenshi needs in
order to save the specified n creatures.

page 16 of 28

Sample Input

3

1

aaaaa

aabbb

2

ababab

abab

ababa

2

aaaa

bbbbb

ccc

Sample Output for the Sample Input

3

1

8

page 17 of 28

Problem J
Robot Dispatch Problem

Time limit: 2 seconds

Let us consider a sensing field on which sensors are deployed. These sensors will monitor
their surroundings and report where events occur. For convenience, the occurrence of each
event is described as one point in the sensing field (e.g., the center of the sensors that detect
the event). Furthermore, there also exist a number of robots arbitrarily distributed in the
sensing field. When some events occur, robots will be asked to move to the locations of these
events to do analysis and reaction. To improve the efficiency of dispatch, each event location
should be visited by exactly one robot. The sensing field contains no obstacles, so a robot
is free to move to any position in the sensing field. However, since events may not last for
a long time, robots should move to event locations as fast as possible. Thus, once an event
location is assigned to a robot, this robot will move straight to that event location.

The robot dispatch problem is formulated as follows:

Suppose that a set of distinct event locations L̂ = {l1, l2, · · · , ln} are reported by
sensors in the sensing field. We are given a set of robots R̂ = {r1, r2, · · · , rn}
used to analyze events. Let d(ri, lj) be the Euclidean distance between the current

position of a robot ri ∈ R̂ and an event location lj ∈ L̂, where d(ri, lj) ≥ 0. For

each event location lj in L̂, this problem asks how to assign one robot to visit it,

such that the total moving distance of robots in R̂ can be minimized.

Please write a program to calculate the best assignment of robots. You will be given the
distance between each event location and every robot (in a 2D array). The output of your
program should be the overall moving distance of robots based on your assignment.

Technical Specification

1. There are 10 test cases.

2. 10 ≤ n ≤ 50.

3. The value of each d(ri, lj) item must be a positive integer.

4. 10 < d(ri, lj) < 100.

Input Format

Each test case contains an integer n followed by an n× n array, where n > 1. The (i, j)-th
element in the array is the distance d(ri, lj) between robot ri and event location lj. The last
test case is followed by a line containing a single 0.

page 18 of 28

Output Format

The output for each test case is the total moving distance of robots.

Sample Input

2

3 7

8 9

3

40 60 15

25 30 45

55 30 25

0

Sample Output for the Sample Input

12

70

page 19 of 28

Problem K
Climbing Stairs

Time limit: 3 seconds

There is a long staircase over a mountain. It takes N -steps stairs to reach the top. Each
time you can climb 1, 2, 3, · · · , or H steps. But if you don’t want to climb all the steps,
you can hire bearers at 0th step to take you to some kth step and then climb to the top by
yourself. But the bearers will charge you 0, 1, 2, · · · , or kH ×Hk dollars randomly by rolling
a wheel. How many distinct methods(ANS) are there to reach the top? For the convenience
of verifying the answer, please output ANS mod M for a given positive integer M .

Let us consider the example of H = 2, and N = 3. You can climb 1 step three times. The
method is denoted as (1, 1, 1). You can climb 1 step and then climb 2 steps, which is denoted
as (1, 2). You can climb 2 steps and then climb 1 step, which is denoted as (2, 1). Bearers
can take you to the first step, and then you climb 1 step twice, which is denoted as (B1, 1, 1)
with 12× 21 + 1 methods. Bearers can take you to the first step, and then you climb 2 steps,
which is denoted as (B1, 2) with 12×21+1 methods. Bearers can take you to the second step,
and then you climb 1 step, which is denoted as (B2, 1) with 22×22 +1 methods. Bearers can
take you to the third step, which is denoted as (B3) with 32×23+1 methods. So the number
of methods are 1 + 1 + 1 + (12 × 21 + 1) + (12 × 21 + 1) + (22 × 22 + 1) + (32 × 23 + 1) = 99.
If an integer M = 5 is given, then please output 99 mod 5 = 4.

Technical Specification

1. There are at most 10 test cases.

2. 2 ≤M ≤ 1, 000, 000, 000.

3. 0 ≤ k ≤ N

4. 1 ≤ H ≤ 15.

5. 1 ≤ N ≤ 1064

Input Format

The first line contains an integer indicating the number of test cases. Each test case contains
three integers, M , H, and N .

Output Format

For each test case, please output the number (modM) of distinct methods to reach the top.

page 20 of 28

Sample Input

2

999 2 3

8 1 3

Sample Output for the Sample Input

99

2

page 21 of 28

Problem L
Rescue Mission

Time limit: 4 seconds

The princess has been imprisoned in the bottom-right corner of a castle. The castle consists
of M x N rooms laid out in a 2D grid. Mario was initially positioned in the top-left room
and must fight his way through the castle to rescue the princess. In order to reach the
princess as quickly as possible, Mario decides to move only rightward or downward in each
step.

Mario has an initial health point represented by a positive integer. If at any point his health
point drops to 0 or below, he dies immediately.

Some rooms are guarded by monsters, so Mario loses health (negative integer) upon entering
these rooms; some rooms are either empty (0’s) or contain magic mushrooms that increase
Mario’s health (positive integers); the other rooms are blocked that Mario couldn’t pass
through.

Please write a computer program to determine Mario’s minimum initial health
point so that he is able to rescue the princess. If Mario cannot complete the
mission due to blocked rooms, return -1.

Note:

� Any room can contain monsters or mushrooms, even the first room Mario enters and
the bottom-right room where the princess is imprisoned.

Technical Specification

1. Mario’s health point is at most 109.

2. 2 ≤M ≤ 1000, M is an integer.

3. 2 ≤ N ≤ 1000, N is an integer.

4. Health points gained/lost from a room are integers.

5. If a room is blocked, Mario can’t enter this room and the value of this room is -1001.

6. And if a room is not blocked, −1000 ≤ the value of this room ≤ 1000

page 22 of 28

Input File Format

The test data file contains many test cases. The first line gives you the number of test cases.

The second line contains two integers, indicating M, N of case 1 respectively.

For the next M lines, each line has N integers. Each integer represents a room in the castle
and the health points should be gained/lost from this room. If the integer is -1001, it implies
this room is blocked.

The next line contains two integers, indicating M, N of case 2 respectively, and so on.

Output Format

The output of each test case is either an positive integer or -1. Each output should be placed
in a separate line.

Sample Input

2

2 2

-10 -1001

-1001 -10

3 3

-200 -300 -1001

-500 -1000 100

1000 -1001 -500

Output for the Sample Input

-1

1901

page 23 of 28

Problem M
The Summit from Where I Stand

Time limit: 1 second

Ivan loves climbing mountains. When he is on his hiking trip, he often looks into the distance
and observes the peaks of the surrounding mountains. He found an interesting fact that,
when he looks towards the same mountain from different viewpoints, the “uppermost“ point
of the mountain he can see varies with the position he currently stands in.

To simplify the scenario, assume that Ivan’s position is described by a point q = (xq, yq)
in the second quadrant of the 2-D plane and the shape of the mountain is described by a
convex polygonal curve p1 = (x1, y1),p2 = (x2, y2), . . . ,pn = (xn, yn) in the first quadrant of
the plane which begins and ends both at the x-axis.

You can further assume that

� 0 < |xq| ≤ 105, |yq| ≤ 108,

� x1, x2, . . . , xn is non-decreasing, and

� max
1≤i≤n

{|xi|, |yi|} ≤ 108.

Given Ivan’s position and the curve of the mountain he is observing, the uppermost point
of the mountain, or, the summit point, Ivan sees from his current position is defined to be
the upper tangent point of his eyesight towards the curve of the mountain. The uppermost
point is defined to be pn if no such tangent point exists.

In this problem you are to verify Ivan’s intriguing observation. Given the curve of the
mountain and a set of m viewpoints from which Ivan has observed that mountain during his
hiking trip, please output the index of the summit point he sees at each viewpoint.

page 24 of 28

Input Format

The input consists of multiple testcases. Each testcase starts with a line containing two
integers n and m, where 3 ≤ n ≤ 105 and 1 ≤ m ≤ 105.

Then there are n lines, each of which contains two integers xi and yi as described above.
After that there are m lines, one for each query viewpoint. Each of these m lines contains
two integers which are the coordinates of each query viewpoint.

A testcase starting with n = m = 0 indicates the end of input.

Output Format

For each viewpoint in each testcase of the input, print the index of the summit point Ivan
sees in a line. If there are multiple solutions, print the one with the smallest index.

Sample Input

3 4

0 0

0 10

10 0

-1 0

-1 5

-1 11

-1 12

3 1

0 0

1 1

2 0

-2 1

0 0

Sample Output for the Sample Input

2

2

2

3

2

page 25 of 28

Problem N
Server Connectivity
Time limit: 10 seconds

For a graph G = (V,E) and a subset S ⊆ V , we use G[S] to denote the subgraph of G
induced by S, which is the graph obtained from G by removing all vertices not in S and their
incident edges. For instance, for the graph G = (V,E) in Figure 1, where V = {1, 2, ..., 7}
and E = {(7, 2), (1, 3), (2, 4), (5, 1), (2, 6)} and S = {2, 4, 7}, we have G[S] = (V ′, E ′), where
V ′ = {2, 4, 7} and E ′ = {(7, 2), (2, 4)} (See Figure 2). For a graph G = (V,E), we say that
G is connected if there is a path between every pair of vertices u, v ∈ V . For example, the
graph in Figure 1 is not connected, while the graph in Figure 2 is connected.

Figure 3: G Figure 4: G[S]

Figure 5: G1 and G2

A software company has a set of servers around the world to handle their global service.
The servers are linked to each other by two types of connections, where connections of each
type form a network that contains no cycles. These two networks are represented by two
graphs G1 = (V,E1) and G2 = (V,E2), where V is the set of servers and E1 (E2) is the

page 26 of 28

set of connections of type 1 (type 2). The owner wishes to solve a problem described as
follows. A subset S ⊆ V is a common connected component if G1[S] and G2[S] are both
connected. For instance, in Figure 3, S = {2, 4, 7} is a common connected component of G1

and G2, but S ′ = {4, 7} is not. A common connected component S is maximal if it is not
contained in a larger common connected component. For example, in Figure 3, S = {2, 4, 7}
and S ′′ = {2, 4} are both common connected components. In this example, S is maximal,
but S ′′ is not. For the example in Figure 3, the set of maximal components is {{2, 7, 4}, {1,
3}, {5}, {6}}. It is easy to observe that the set of maximal common connected components
is unique and represents a partition of the vertex set.

Please write a program to find the number of maximal common connected components and
the size of the largest common connected component of two given graphs G1 and G2.

Technical Specification

� The number of test cases is at most 25.

� The number, n, of vertices is an integer between 1 and 2× 105.

� The vertex set is V = {1, 2, ..., n}.

� G1 and G2 are (undirected) graphs with no cycles.

Input File Format

The first line of the input is an integer t, indicating there are t test cases. The first line of
each test case gives 3 integers n, m1, and m2, where n is the number of vertices and m1 (m2)
is the number of edges in G1 (G2). Then, m1 +m2 lines follow, where the first m1 lines give
the edges of G1, the remaining lines give the edges of G2, and each line contains two integers
i and j (1 ≤ i, j ≤ n), indicating there is an edge connecting vertex i and vertex j.

Output Format

For each case, output two integers in a line, where the first is the number of maximal common
connected component and the second is the size of the largest common connected component.
For the example in Figure 3, the output is 4 and 3.

page 27 of 28

Sample Input

3

7 5 5

7 2

2 4

1 3

2 6

5 1

3 4

2 5

3 1

4 2

7 4

3 2 2

1 2

2 3

1 3

3 2

4 3 2

1 2

1 4

1 3

3 4

2 4

Output for the Sample Input

4 3

1 3

4 1

page 28 of 28

