
2009 National Collegiate Programming Contest

• Problems: There are 10 problems (20 pages in all, not counting this cover page)
in this packet.

• Problem Input: Input to the problems are through the input files. Input file-
names are given in the table below. Each input file may contain one or more test
cases. Test cases may be separated by any delimiter as specified in the problem
statements.

• Problem Output: All output should be directed to standard output (screen
output).

• Time Limit: The judges will run each submitted program with certain time
limit (given in the table below).

Table 1: Problem Information Sheet

Problem Name Input File Time Limit

Problem A Fast Computation of Exponentiation pa.in 3 sec.

Problem B Color pb.in 3 secs.

Problem C Paper Folding Game pc.in 2 secs.

Problem D Food Centers pd.in 10 secs.

Problem E Merger pe.in 10 secs.

Problem F A Renting Problem pf.in 10 secs.

Problem G Similarity of Rhythms pg.in 1 secs.

Problem H Rice Control ph.in 5 secs.

Problem I The Most Powerful Team pi.in 5 secs.

Problem J Three Point Resection Problem pj.in 10 secs.

I

Problem A
Fast Computation of Exponentiation

Input File: pa.in
Time Limit: 3 sec.

Problem Statement

In cryptography, a fast computation of integer exponentiation in Zn = {0, 1, . . . , n − 1},
where n is a positive integer, is very important. Let g, h, n be positive integers, define

x ≡ gh mod n,

where x is the remainder of gh divided by n.

This problem asks you to write a fast program to compute x with given intgers g, h, n,
where h and n could be as large as up to 226 − 1 within 3 seconds for up to 5 cases.

Technical Specification

1. 1 < g < n < 226

2. 1 < h < 226

Input File Format

The first line of the input file always contains one integer, K ≤ 5, indicating the number
of test cases to come. Each of the following lines contains three integers g, h, n based on
which, you need to compute x ≡ gh mod n.

Output Format

For each given triple of g, h, n, report g, h, n, x, where x ≡ gh mod n.

Sample Input

5

2 7 127

3 4 7

22 1234567 4097

25 4194303 32767

31 67108863 65535

1

Sample Output

5

2 7 127 1

3 4 7 4

22 1234567 4097 1863

25 4194303 32767 15625

31 67108863 65535 63421

2

Problem B
Color

Input File: pb.in
Time Limit: 3 sec.

Problem Description

The FunFun Waterpark has installed a new game that is mentally challenging. The game
surface is composed of rectangular grid of mxn cells. At the onset of the game, water hoses
are placed under s distinct cells and s distinct color dyes (numbered from 1, . . . , s) are
place on top of these distinct cells. The water hoses are turned on at beginning of the game,
filling the cell it is on with distinct “colored” water. With each passing unit of time, the
“colored” water is spilled over to it’s neighboring cells that are immediately to the north,
south, east, and west directions. So eventually, the water will flood the entire game surface.
Special insulation is placed on the game surface, so that when a cell is filled with water of
a particular color, then no water of other color can spill into that cell. Furthermore, if two
or more source (distinct color) of water can spill into a cell at the same time, then the cell
is filled with water with a lower dye number.

In the example below (which corresponds to Sample Input 1), the game surface is com-
posed of 10x6 cells. Five hoses and five distinct color dyes are placed on five distinct cells
as shown in (a). At the first unit of time, the water are spilled over to neighboring cells
as shown in (b). After the 5th unit of time, the water will have covered the entire game
surface as shown in (c).

Figure 1: (a) Initial game setup, (b) after one unit of time, (c) after five unit of time.

Please write a program to determine which color of water will have occupied the most
game cells. If there is a tie, print all that tied from the smallest color number to the largest
colored number.

Technical Specification

1. The grid size is 1 <= m,n <= 1, 000. The cells are labelled from (1, 1) ... (m, n) in
a two-dimensional grid.

2. The initial number of hoses and dyes is s, 1 ≤ s ≤ 20.

3

Input File Format

The first line of the input contains an integer t, indicating the number of test cases to follow.
The first line of each test case contains four integers, m,n, and s separated by a space. The
next s lines each contains two integers rowi and coli, indicating the location of the hose and
color dye i.

Output Format

For each game played, output color dye number(s) that would occupy the most number
of cells when the entire game surface is filled with water. If more then two colored water
covered equal number of cells, then output all in the order of their color number from
smallest to largest.

Sample Input

2

10 6 4

2 3

7 3

8 2

9 6

3 6 5

1 6

2 4

2 3

2 2

3 1

Output for the Sample Input

1

2 4

4

Problem C
A Paper Folding Game

Input File: pc.in
Time Limit: 2 sec.

Problem Description

A paper strip as seen in Fig. 1 is composed of many squares on both sides (called side A
and side B). These squares are indexed from 0, 1, 2, and so on from one end of the paper
strip to the other end. We use (i, A) to refer to the square with index i at side A and (i, B)
to refer to the square with index i at side B. Each square has a score ranging from -10 to
10.

Figure 2: An example to fold a 3-square paper strip.

The game begins by folding square 0 onto square 1. There are two choices to fold the
paper, either you fold (0, A) onto (1, A) or (0, B) onto (1, B). When a choice is made, two
touched squares are considered as sealed; that is, it is impossible for these two squares to
touch any remaining squares. Continuously, there are two choices to fold the sealed square
0 and square 1 onto square 2 (see the bottom figure of Fig. 1). This process continues until
you fold from one end all the way up to the other end.

In each folding, you get points by multiplying the scores on two touched sides. For
example, in Fig. 1, folding (0, A) to (1, A) you get -5 points but folding (0, B) to (1, B) you
get 30 points. The total score of the game is adding all the points of every folding. The
example in Fig. 1 has maximum points of 50.

Given a paper strip with S squares, please output the maximum score a best folding
can make.

5

Technical Specification

1. 2 ≤ S ≤ 30

Input File Format

The first line of the input file contains an integer indicating the number of test cases to
follow. Each test case begins with an integer S, which is the number of squares of a paper
strip. Following S is S lines of scores that is on side A followed by the score that is on side
B.

Output Format

For each test case, please output the maximum total score that a best folding can produce.

Sample Input

2

3

-1 10

5 3

4 2

3

-10 5

-10 3

-10 2

Output for the Sample Input

50

115

6

Problem D
Food Centers
Input File: pd.in

Time Limit: 10 sec.

Problem Description

Recently Taiwan was hit by a typhoon so the government sets up a network to distribute
food to people in the affected area. The network is a tree, every leaf is a shelter, and every
edge is a road connecting two nodes in the tree. Every road is 1 kilometer in length.

Now we want to assign a subset of tree nodes to be food centers that distribute food.
The food center can be set up in any tree node, including the leaves where the shelters are
located. The rule is that if there is no food center at a shelter, people living in that shelter
will have to go to the nearest food center by traveling along the unique path towards the
root, and get food at the first food center they find. After they get food they will travel
back to the shelter where they live. In addition, people in different shelters have different
physical strength, so there is a limit in how far they can travel for food. For example, if
people in a shelter have physical strength 2, then they can only travel to the next tree node
towards the root, and then go back to their shelter. If people in a shelter have physical
strength 0, then they must have a food center located right at their shelter.

Since the government only has a limited budget, it can only build k food centers. Also
since it is always possible that people may reach the root for food, there must be a food
center at the root, therefore we only need to choose locations for the remaining k − 1 food
centers. While choosing the locations for food centers, we want to balance the number of
people that will be served by these k food centers. For ease of notation we use workload
of a food center to denote the number of people severed by that food center. Now the
problem is, given the number of people at each shelter and their physical strength, we want
to choose the locations for the k− 1 food centers, so that all people can reach a food center
within their physical strength limit, and the maximum workload among all food centers is
minimized.

Technical Specification

1. The number of test cases (c) is no more than 10.

2. The number of shelters (n) is no more than 10000.

3. The number of food centers (k) is no more than n.

4. The number of people living in a shelter is no more than 100.

5. The physical strength is no more than 100.

Input File Format

The first line of the input file contains an integer (c) indicating the number of test cases
to follow. The first line for a case has two positive integers n and k for the number of tree
nodes and the number of food centers to be built. The tree nodes are numbered from 0 to

7

n− 1. Each of the next n− 1 lines have three integers that describe a tree node (root has
index 0 and does not need to be described). The first number of the i-th line is the index
of the parent of i-th tree node, the second non-negative integer is the number of people
living in the i-th tree node, and the third non-negative integer is the physical strength of
the people living in that tree node. Note that if the tree node is an internal node, i.e., a
non-leaf node, it does not have a shelter, so the number of people and the physical strength
are both 0.

Output Format

The output has c lines. The i-th line has the minimum possible maximum workload among
all food centers for the i-th test case. Note that for the inputs you are given it is always
possible to find a solution such that everyone can reach a food center within his physical
strength.

Sample Input 1

1

5 3

3 5 0

3 35 2

4 0 0

0 0 0

Sample Output for the Sample Input 1

35

Sample Input 2

1

10 3

3 0 0

3 0 0

0 0 0

1 0 0

4 0 0

2 26 2

5 24 6

1 84 5

1 66 10

Sample Output for the Sample Input 2

174

8

Problem E
Merger

Input File: pe.in
Time Limit: 10 sec.

Problem Description

In business or economics, a merger is a kind of corporate strategy that can help a company
grow rapidly without creating another business entity. In general, a merger comprises of
two companies: one is the buyer, and the other is the seller. Moreover, after a merger, the
formed company is named after the buyer company, and its stock value (V) is determined
by the formula: V = αX + (1−α)Y ; where X and Y are the stock values of the buyer and
the seller, and α is a scaling factor in the range of [0,1].

Suppose there are N companies located along a line, and let Ci denote the i-th company.
There are two rules that must be followed in a merger:

1. The buyer must be adjacent geographically to the seller (i.e., there are no companies,
among the N companies, located between the buyer and the seller).

2. The N companies have to collaborate in the process of the merger, so that they can
become a single company with the highest stock value.

For instance, let α = 0.50 and there are three companies, C1, C2, and C3, along a line
geographically. The initial stock values of the three companies are 10, 20 and 30 respectively.
To maximize the stock value after merging them to one company, one of the best strategies
is to let C1 buy C2 first, and C1 buy C3 next. Therefore, after the first merger, the formed
company is named after C1 and its stock value is 15.00. Then, after the second merger, the
formed company is named after C1 and its stock value is 22.50.

Technical Specification

1. N is an integer, and 0 < N ≤ 1, 000.

2. The initial stock value of a company is a positive integer smaller than or equal to
10,000.

3. α is a real number, and 0 ≤ α ≤ 1.

Input File Format

The first line of the input file contains an integer indicating the number of test cases to
follow. For each test case, the first line contains a positive integer N , representing the
number of companies to merge; and the second line contains a positive real number α,
which has exact two digits after decimal. In the following N lines, the i-th line contains the
initial stock value (which is a positive integer) of the i-th company, which is in the same
order of their geographical location (from the west to the east).

9

Output Format

Please output one number in one line for each test case. The number represents the highest
stock value of the company after the merger. The value of the output number should be
round off to two digits after decimal.

Sample Input 1

1

3

0.50

10

20

30

Sample Output for the Sample Input 1

22.50

Sample Input 2

1

3

0.50

10

10

10

Sample Output for the Sample Input 2

10.00

10

Problem F
A Renting Problem

Input File: pf.in
Time Limit: 10 sec.

Problem Description

Assume that there are n different available processors. For each processor, we can use it
alone or sharing with others. For convenience, we call them alone and sharing processors,
respectively. We want to rent k alone processors from them and execute simultaneously to
finish our task. Clearly, each alone processor is more expensive than its sharing processor.
An alternative way is that each alone processor can be replaced by exactly 3 different
sharing processors if their total cost is cheaper than the alone processor. The constraint on
the number of processors can be described by the equation: 3 ∗ |Sα| + |Sβ | = 3 ∗ k where
Sα and Sβ are the sets of the selected alone and sharing processors, respectively. We can
see that if Sβ = ∅ (respectively, Sα = ∅), then |Sα| (respectively, |Sβ |) must be equal to k
(respectively, 3 ∗ k) to fulfill the requirement. If |Sβ | = 3, then |Sα| can only be equal to
k − 1, etc. What we want is to find the cheapest way to rent processors with sets Sα and
Sβ in order to finish our parallel task.

For instance, assume that the set of available processors

S =

s1 s2 s3 s4 s5 s6
8 10 14 20 42 44
3 6 12 18 2 1

where s1 = (8, 3), s2 = (10, 6), . . ., and s6 = (44, 1). That is, the costs to rent processor s1
as an alone and a sharing processor are 8 and 3 dollars, respectively, and the corresponding
renting costs for processor s2 are 10 and 6 dollars, respectively, etc. Assume that our
parallel task only needs two alone processors, i.e. k = 2. Thus, the constraint on the
number of processors can be formulated as 3 ∗ |Sα| + |Sβ | = 6. We can see that Sα = ∅
and Sβ = {s1, s2, s3, s4, s5, s6} satisfy the constraint. Its corresponding value is

∑
si∈Sα

αi+∑
si∈Sβ

βi = 3 + 6 + 12 + 18 + 2 + 1 = 42. However, in this example, Sα = {s2} and

Sβ = {s1, s5, s6} achieve the cheapest way to rent processors. The corresponding value is∑
si∈Sα

αi +
∑

si∈Sβ
βi = 10 + 3 + 2 + 1 = 16.

Technical Specification

1. N is an integer, and 0 < N ≤ 1, 000.

2. The initial stock value of a company is a positive integer smaller than or equal to
10,000.

3. α is a real number, and 0 ≤ α ≤ 1.

Input File Format

The first line of the input file contains an integer m, m ≤ 4, which represents the number
of test cases. Each test case contains three lines of input data. The first line of a test

11

case contains two positive integers n (≤ 100) and k (≤ 50) which are the aforementioned
variables. The second line of a test case contains n integers which are the renting prices of
n alone processors. Note that no price is greater than 100. The third line also contains n
integers which are the renting prices of n sharing processors corresponding to their alone
processors listed in the previous line. For example, in the following sample input, the first
test case contains three processors. The prices for renting alone processors are 9, 10, and
16, respectively, and the prices for renting their respective sharing processors are 6, 9, and
2, respectively.

Output Format

For each test case, output the cheapest price for renting renting processors in one line.

Sample Input

2

3 2

9 10 16

6 9 2

6 3

8 10 14 20 42 44

3 6 12 18 2 1

Sample Output

19

30

12

Problem G
Similarity of Rhythms

Input File: pg.in
Time Limit: 1 sec.

Problem Description

Imagine that you are clapping at a fast uniform pace, much like a heart beat while jogging,
but stop after you reach sixteen claps. Then do it again but this time execute the first,
fourth, seventh, eleventh and thirteenth claps loudly, and the remaining eleven claps softly.
Your clapping pattern could be represented as: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16],
where the claps shown in large bold face are the ones you clap loudly. If you repeat this
pattern over and over, making the soft claps completely inaudible, you will be clapping one
of the most popular rhythms on the planet, known mainly as the Clave Son from Cuba. In
physiology, where the study of cardiac rhythms is important, as well as in computer science
the Clave Son can be written as the 16-bit binary sequence: 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0.

Traditionally, rhythmic similarity measures have been evaluated or compared with re-
spect to how well rhythms may be recognized, how efficiently they can be retrieved from a
data-base, or how well they model human perception and cognition of rhythms. The type
of similarity measure chosen is in part predetermined by the manner in which the rhythm
is represented. For binary sequences a natural measure of distance or dissimilarity is the
Hamming distance widely used in coding theory. The Hamming distance is simply the
number of places in the strings where elements do not match. Dr. Gamming is an expert
in rhythmic comparison and invents the so called Gamming distance to measure the
similarity of two rhythms represented in binary sequences. Given an array S, representing
a binary sequence, define three types of operations on S:

1. An insertion ins(i) changes S[i] from 0 to 1;

2. A delete del(i) changes S[i] from 1 to 0;

3. A shift sh(i, j) changes S[i] from 1 to 0 and S[j] from 0 to 1.

Each one of the operations has a non-negative cost: cins for an insertion, cdel for a deletion,
and |i−j|csh for a shift sh(i, j). The Gamming distance between two binary sequences S
and T of the same length, ℓ, is the minimum cost of a sequence of operations that transforms
S to T . Note that Gamming distance may not be symmetric. The traditional Hamming
distance has: cins = 1, cdel = 1 and csh = ∞. You are asked to write a program to compute
the Gamming distance of two binary sequences with the corresponding operation costs.

Technical Specification

1. n: the number of test cases. 10 ≤ n ≤ 20.

2. ℓ: the length of binary sequences. ℓ ≤ 100.

3. cins, cdel and csh are positive integers and have range from 1 to 100.

13

Input File Format

The first line of the input file contains an integer n indicating the number of test cases to
follow. Each test case starts with 4 positive integers, separated by one or more spaces, in a
line: ℓ cins cdel csh. Then two binary strings, representing the rhythms, follow, where each
starts in a separate line and ends with the character ’*’. Each test case ends with a ’0’ in
a separate line.

Output Format

For each test case, output the Gamming distance from the first binary string to the second
one.

Sample Input

3

5 1 1 10

00000*

11111*

0

10 3 8 1

1010101010*

1001101110*

0

10 3 8 1

1001101110*

1010101010*

0

Sample Output for the Sample Input

Case 1: 5

Case 2: 4

Case 3: 9

14

Problem H
Rice Control
Input File: ph.in
Time Limit: 5 sec.

Problem Description

The FORMOSA-RICE company owns N rice fields and N processing plants. Each rice
field can produce rice to the capacity of one plant. The profit that results from sending the
output of rice field i to plant j is wi,j .

A graph G = (X
∪

Y,E) is bipartite if its vertex set is the union of two disjoint sets
X and Y such that (u, v) ∈ E implies that either u ∈ X and v ∈ Y , or u ∈ Y and
v ∈ X. Placing weight wi,j on edge (i, j) gives us a weighted bipartite graph with partite
sets X = {1, 2, . . . , N} representing N rice fields, and Y = {1, 2, . . . , N} representing N
processing plants.

The government claims that too much rice is being produced, so it will pay ui if the
company agrees not to use rice field i and vj if it agrees not to use plant j. If ui+vj < wi,j ,
then the company makes more by using the edge (i, j) than by taking the government
payments for those vertices. In order to stop all production, the government must offer
amounts such that ui + vj ≥ wi,j for all i, j. The government wants to find such the target
value such that

∑
1≤i≤N ui +

∑
1≤j≤N vj is minimum. Your task is to write a computer

program to find the target value.

Technical Specification

1. 1 ≤ N ≤ 600

2. 0 ≤ wi,j ≤ 300, i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , N}

Input File Format

The first line of the input file contains an integer indicating the number of test cases to
follow. Each test case has the following format: the first line of each test case contains
a positive integer N indicating the number of rice fields (plants). The next N × N lines
contain the rice production from one rice field to one plant in which each line is represented
by three positive integers separated by a single space; the first integer representing the rice
field i and the second representing the plant j, and the third representing wi,j . A 0 at the
(N ×N + 2)th line indicates the end of this test case.

The next test case starts after the previous ending symbol 0. Finally, a −1 signals the
end of the whole inputs.

Output Format

Each line contains an integer, which is the target value of the corresponding test case.

15

Sample Input

2
5
1 1 4
1 2 1
1 3 6
1 4 2
1 5 3
2 1 5
2 2 0
2 3 3
2 4 7
2 5 6
3 1 2
3 2 3
3 3 4
3 4 5
3 5 8
4 1 3
4 2 4
4 3 6
4 4 3
4 5 4
5 1 4
5 2 6
5 3 5
5 4 8
5 5 6
0
1
1 1 2
-1

Sample Output for the Sample Input

31
2

16

Problem I
The Most Powerful Team

Input File: pi.in
Time Limit: 5 sec.

Teamwork is more and more emphasized nowadays. Sometimes it is even more important
than individual skill. Two persons with very good capabilities but bad in cooperation may
mess the whole work. In this problem, we want to organize a team. There are several
persons we can choose. For each person we are given a score for his capability and the
score of a team is the total score of its members. Our goal is to organize a team of largest
total score. However, people are usually emotional. If we put someone together with a
person he dislikes, there may be a big trouble. Therefore, we must follow the following
rule: no one dislikes anyone in the team. This restriction indeed makes our job more
involved. Fortunately, we know that, for each person, there is at most one he dislikes. This
information really helps us to organize the most powerful team. In this problem, you are
given the capability scores of n persons and also the information of dislike. The goal is to
select some of the persons into a team such that no member in the team dislikes any other
member so as to maximize the total capability.

Technical Specification

1. n ≤ 20000

2. capability score is an integer between 0 and 1000

Input File Format

The input consists of a number of test cases. Each test case consists of three lines. It begins
with a positive integer n ≤ 20000 on a line by itself indicating the number of persons. Each
person is labeled by a unique integer from 1 to n. The second line has n nonnegative integers
d1, d2, . . . , dn separated by spaces, in which di is the one that person i dislikes. We assume
that di is not equal to i for each i. If di = 0, person i dislikes no one. There are also n
integers in the third line, which are the capability scores of the persons in the order from
person 1 to person n. The capability scores are all in the range from 0 to 1000. The input
ends by a case with n = 0. For example, the first test case in the Sample Input consists of
the following data: 4 2 3 4 0 9 5 3 4 In this case, there are 4 persons can be chosen. Person
1 dislikes 2, 2 dislikes 3, 3 dislikes 4, and 4 dislike no one. Choosing persons 1 and 4 into
the team maximizes the total score to 13.

Output Format

For each test case, your program has to output the maximum team capability in a line. You
don’t need to process the case with n=0.

17

Sample Input

4

2 3 4 0

9 5 3 4

2

2 1

100 200

0

Output for the Sample Input

13

200

18

Problem J
Three Point Resection Problem

Input File: pj.in
Time Limit: 10 sec.

The three-point resection problem is often seen in location determination, triangulation,
and pose estimation. The problem for the three-point resection is illustrated in Figure 1
and is defined as follows.

Given the center of perspective which is located at (0, 0, 0), three length among three
unknown points whose locations are to be determined, and the positions of three perspective
projection of the three unknown points on the image plane, the goal is to find the three
unknown points’ position in the 3D Cartesian coordinate.

As illustrated in Figure 1 three unknown points are A,B, and C that are all represented
as (x, y, z) in the 3D Cartesian coordinates. The distance between A and B is S3, between
B and C is S1, between C and A is S2. Focus length that is the distance between the center
of perspective to the image plane is set to one. The perspective projection image points of
A,B and C are Ia, Ib and Ic in image coordinate (u, v) respectively. Note that the solution
is not unique, there are as many as four solutions for non-degenerate case.

Figure 3: The Three-Point resection

Input File Format

The input consists of a number of test cases. The first line contains a positive number n
indicates how many test cases available. The second line to n+1 line are the information
of three side length and the perspective projection image points of A , B and C, such as
S1, S2, S3, Ia, Ib and Ic . Each line contains three side length in floating point format , image
point (u, v) is in the format of floating point too. The accuracy for the intersection is up to
0.001.

19

Output Format

The output should indicate the order of case at the first line of each case, then follows the
number of solutions found, num, and then the following num lines list the 3D Cartesian
coordinate of the three unknown points A, B and C of each solution.

Sample Input

3

12.042 6.708 9.487 0.1 0.7 0.8182 0.1818 -0.25 0.16667

5.7445626 1.732050 7.348469 0.5 0.6 0.0 0.125 0.44444 0.55555

3.60555 5.3851648 5.4772255 0.2 0.4 0.2 0.4 0.625 0.5

Output for the Sample Input

case 1

4

0.9998 6.9992 9.9989 9.0002 1.9998 11.0001 -3.0000 2.0001 12.0003

0.8585 6.0101 8.5858 0.8901 0.1977 1.0879 -3.0764 2.0510 12.3058

0.8699 6.0897 8.6996 9.0929 2.0204 11.1133 -1.2755 0.8503 5.1020

0.7607 5.3253 7.6075 8.9807 1.9954 10.9761 -3.0130 2.0087 12.0523

case 2

1

5.000 6.000 10.000 0.000 1.0000 8.000 4.000 5.000 9.000

case 3

2

2.5333 5.0667 12.6667 1.5333 3.0667 7.6667 5.0 4.0 8.0

1.0 2.0 5.0 2.0 4.0 10.0 5.0 4.0 8.0

20

