Problem A
Number guessing

Input file: pa.txt

Problem Statement

A standard dice is given in Figure 1-(a). The opposite sides of a dice always add up to
seven. Given three standard dices which are stacked as shown in Figure 1-(b) and
based on the numbers shown on front view and side view, you are asked to write a
program to determine what are the numbers on the top and the base surfaces of this
stack of dices?

I-(a) JB—{EIRHEAIH T - B AR S B RR AL BE SR SR 7 - SRTER
ZAERHENIEL T o B EYIAIE 1-(b) - BT IR NS5 E BB AR - 5%
BRE—EEARRER 1-(0)f LERFIY L AEEEE - RS TR0
[EIf:RET e

(a)

Figure 1 (a) A standard dice. (b) A stack of three standard dices.

Input File Format

The first line of the input file contains an integer N, 1< N <10, indicating the
number of test cases. There is a single line containing a */* character separating two
consecutive test cases. The last line of the input file contains a °." character denoting
the end of the input file. Each test case consists of 3 lines which represent a pair of
numbers from top to bottom dices, and each line contains a pair of front face number
and side face number.

Output Format

For each test case, print out all of the following on a single line separated by
blanks:

Case i: The top face is and the bottom face is

where i is the test case number.
Sample Input

3
5
2

Y OY U DWW NN
[\)

Sample Output
Case 1: The top face is 1 and the bottom face is 6
Case 2: The top face is 4 and the bottom face is 4

Problem B
Buddy Memory Management

Input file. pb.txt

Problem Statement

There is a computer with 1M memory. It can execute several programs at the
same time. Company X decides to design a memory management system for the 1M
memory, called BUDDY. The rules of allocating memory to a program are as follows:
Suppose a program needs m bytes of memory and 2"<m <2Y, where U=L+1. BUDDY
will allocate 2" bytes to the program. In order to allocate the 2" bytes to the program,
BUDDY will divide the free memory in a hierarchical and power-of-two manner.

For example, suppose a program A requests 100K bytes memory from a free 1M
bytes memory. According to the design, BUDDY will give 128K (power of 2 that is
greater than 100K) to program A. In order to give a 128K memory segment, BUDDY
first divides the IM free memory into two 512K memory segments. Next, BUDDY
chooses one of lowest 512K memory segment and divides it into two 256K memory
segments. The process continues until a 128K memory segment is created and
allocated to program A. The final segment layout of 1M memory is like Fig.1. We
say segment 1 and segment 2 are buddies because they are divided from the same
256K segment.

F—HEHMEA | Mega Byte 221882 « B TURBHITHS2K - —
FRBA X AT T —EoRB T2 UKERSL - tbkER %
AERECEBATHER KEALRELEEARIN T BE—1EAITKE
KEZ pi8bytes th3etags > 2'«m=<2Y @ B U=L+1> 84k 4 % &8 B3
72 2Vbytes - K i@ - R T L6y RA] > KRB A SR L AR TR
(free memeoru) L] » 12ty F ik R — AR R XY 2 hk F -

o B%A —BEKX A 2K 100K bytes 221% 88 - RIE% I -tk
5494 128K e iugy - B A 128K R A» 100K 69 % —EBEL 2 4Rk F -
R HTERER 128K e el - kA4 sbde IN TR &R ag 2 Muma &
W8 12K #LIER B & o B A KF A% 1K 12K ER &G T
ek 218 256K B MG - BESH-HFEIHAR 128K e BB E & > &
BEEAEA A KL M BB ERwE — - A8 — 4 AMREBERE
Bl B2 AKE S BAIERAKE —18 256K B &kt sl 4 ke -

1 2 3 4
[A=128K 128K 256K [512K |
0 M

Figure 1

Suppose now another program B requests 60K memory. The design searches
among the free memory segments and looks for the smallest free segment that is
larger than 60K. By the rule, segment 2 is chosen for program B. However, according
to the design, 128K is too large. We need to divide the segment into two 64K
segments like Fig.2 and allocate the first 64K segment to program B. In Fig. 2, we say
segment 2 and segment 3 are buddies because they are divided the same segment. On

4

the other hand, segment 1 and 2 are not buddies, although they are adjacent segments.

BXRAEF B —BEAB T2 60K 2218588 - KL A RITELENE
THHZERER - KTANZRBER PIRE —BAN 60K 2LLH I\ HE
B RBEEMRA LBBEHR2 e ELARELENDB R RBKEELL
BRA > 128K KK - KA @ LB RS> 2R R B MKk BT A Bl E & -
ARG B BREEAEAB B AR RMHEL 2 HE & 3
AR BACHHRAM—B I8k EE T 2L ke FBEL] HEL2
CERAKET > BPEErIAsadrey -

1 2l 13 4 5
[A=128K [B] 64K [256K | 512K

Figure 2

Let’s continue with the example. Suppose a program C requests 200K and the layout
becomes Fig. 3.

ERFBEZEGTF - BEA B —ERERCEL 200K Bl lEdm 2R wE

[A=128K [B [64K [C=256K [512K
Figure 3

After C is loaded, suppose program B releases its memory segment. The memory
layout will become Fig. 4, where the two 64K segments are merged into a 128K free
segments because they are buddies.

R X CHBAL BABBARLAISHRRE - MR8 EE ¢ %R E
W AP HE MK ey TARREERGL AR~ 128k THRBRELREA
T RAKPE -

| 2 3 4
|[A=128K [128K [C=256K 512K
Figure 4

Now, please write a program to implement such a design of BUDDY.

FE X THEEKE A % -

Input File Format

The first line of the input file contains an integer N, 1< N <10, indicating the
number of test cases. There is a single line containing a ‘/° character separating two
consecutive test cases. The last line of the input file contains a *." character denoting
the end of the input file.

For each test case, it contains a sequence of program requests. Each program
request is described by (m s), where m is a string, the name of a program and s is the
requested size (in Kbytes) of memory. When s = -/, it means the program requests to
release its memory. When request is (@ -1), it means the end of a test case. Note
that each test case must begin with 1M free memory.

BAOFE PR —EEHN 1< N < 10, &7 £ 68 - S48
QERBIYHEAE B /" %A G BIRBENRERL —FH @ “.7 &FaH
VR R o

FEARES AR BEER - BEERETR W) AP n A
—RBFE - ARANLMH s AR Ry A (U Kbytes) BE 4 -
Fs=-1 B ATHBEALZERbAIEBGEEE - $5£8 (@ -1)85 >
AR ARRESE R - FEE > BEAREFATH IMOTH MM % 34T
@o

Output Format

At the end of each test case, please output the memory layout in one line. The
layout begins with the lowest memory segment. Each segment is output by “(m s)”.
For free segment, please use “free” as the name of the segment.

B RRARK R B R SHE SRR A ey BT B o B B SA A AR A Bl B
o HERERERMEA(ns) B E B H AT A B A free”
1B A2 XL 4% -

Sample Input
2

100
60

@ QFPQWr~NewQwy
}_.\
O
(&)

Sample Output
(A 128) (free 128) (C 256) (free 512)
((thee BiL2) (Bl 51-2)

Problem C
Secrete Code
Input file: pc.txt

Problem Statement

The Department of Defense (DoD) has developed a simple scheme for transmitting
secrete messages across the network. The message is first placed in a binary tree, one
character per node, so that the post-order traversal of the binary tree results in the
message itself. When transmitting the message, the strings that resulted from the
pre-order traversal and the in-order traversal of that binary tree are sent across the
network. When the two strings are received, the original message can be reconstructed
using those two strings along. Please write a program to decode the message from the
two received strings.

The message contains only distinct alphanumeric characters {A-Z, a-z, 0-9}; and
the message length is at most 60 characters long. Upper- and lower-case letters are
considered distinct ASCII characters.

ERIBGER SR T — (A B R A ST AR LR - AR A =0T ¢
BERREBHE—E TR - FEEER— 85T - B#&FKIT (Post-order
traversal) FTzEE B 5 SRR ISR AIEVE. o EERRILIERE - BAREERE — ot
HOHI AT B P QAT RS A B R - B T RS M E 5 4 BT AL
MRS LA TRITRERE, AR R e E R -

BMZERAE R EE TR A NEEL TR 0 B 9 EBFEFITT » [
ZNERERZR 6 OHFIC KNEELFICHE AR -

Input File Format

The first line of the input file contains an integer N, 1< N <10, indicating the
number of test cases. There is a single line containing a ‘/° character separating two
consecutive test cases. The last line of the input file contains a *.” character denoting the
end of the input file.

For each of the test cases, there are two lines of input. The first line contains the
coded message using pre-order traversal. The second line contains the coded message
using in-order travel.

Output Format

For each test case, the output contains a line with the size of the minimum partition
as described above.

Sample Input
2

abc*e
cb*ae

/

A Dce

D Ace

Sample Output
Cc*bea
D echA

Problem D
Longest Common Circular Subsequence
Input file. pd.txt

Problem Statement

For any string X, we use |X] to denote the length of X. For any two strings X and
Y, we say that Y is a circular subsequence of X if there are indices i), ia, ..., ig, ift1s ..,
iy, such that (1) 1 <ip <ipp <... < in<i<ip<..<i<|X], and (2) X[i;] = Y[j]
holds for each index j =1, 2, ..., |Y]. For example, “abcdef™ is circular subsequence of
“xexdxxexxfaxbx”.

Given two strings 4 and B, you are asked to compute a longest string C such that
C is a circular subsequence of both 4 and B. If there are more than one such C, please
output the one with the least alphabetical order.
You may assume that (i) the input strings consist of only those 26 lower-case English
characters, and (ii) the length of S is at most 100.

HEMFE X, MR AREX 9RE. HEAHBEFE X ALY, R
T 454 A 3L, B #4948 Y & X 89— 18 circular subsequence of X

AT AR AT B &5 1051 125 e L i Ly oo im LLEH

(D1 <ip) <@g <... <im<hH<ip<..<p<|X], mA

Q) X[§] = Y] $HEATj=1,2, .., [Y|& K334 M 3.

54w, “abedef” & “xcxdxxexxfaxbx”#y—18 is circular subsequence.

BE A M B REFE AMERBRLEFSE CHEF C R A4 8 B REk#ER
circular subsequence. 4v R A 4F &R k&9 £ F circular subsequence, 8] 3% 4 3%
BFaERHED o eh— 1.

PRET BMBER () ATEIAE) F A R 26 B9 3E SN E FEMAR, UAG) AW F
B RAEHFAS 100.

Input File Format

The first line of the input file contains an integer N, 1< N <10, indicating the
number of test cases. There is a single line containing a /* character separating two
consecutive test cases. The last line of the input file contains a ‘.” character denoting
the end of the input file. For each of the test cases, there are two lines of input strings.

WA E — T — B NOSNST0y g% 2 K om0 3K 5 4 % 8 42 5 2 53]
REMZEA 7 FARE. ARERGRE—TH @ EIREEES
R BEARETHNERTREAIFBHRA>NREZENREHORBAHAF
$ A4 8B

Output Format

For each of the test cases, print on one line the longest common circular
subsequence with the least lexicographical order.

B 2R E M A, & & 89 common circular subsequence. 4o £ 4F &
B =T A &9 2B, R SA 8 o) e B8 S LA AR BE 5 F 3k) 89 — Bl (the least lexicographical
order) °

Sample Input

2

xcxdxxexxfaxbx
bycyydyeyyfyayyy
/

Jxwxhxuxixvx
zizvzijzwzzuh

Sample Output
abcdef

hij

Problem E
Cube mapping
Input file: pe.txt

Problem Statement

If seven of the twelve edges of hollow cube are cut as shown in Figure 1-(a) and
the faces then opened out, the result would be a cross shape as shown in Figure 1-(b).
However cutting different choices will produce different shapes. Now by given the
vertices of six faces of an opened out shape. You are asked to write a program to
determine whether they can form a cube or not.

Bl 1-(a) B—{BIZE 0T R AT 6 (B R 12 (Hif » B
SSHBA - AEBFTLUSEIA0E 1-(b) (ORI - (LRANEEINE TR i - 12
SR BEE R — - B TR - < BRI S
— R 5 S D A — (B2 L T -

(a)

(b)

Figure 1 (a) A hollow cube (b) The faces after opened out.

Input File Format

The first line of the input file contains an integer N, 1< N <10, indicating the

10

number of test cases. There is a single line containing a ‘/° character separating two
consecutive test cases. The last line of the input file contains a ‘.” character denoting
the end of the input file. Each test case consists of six lines, and each line contains
four pairs of vertex coordinates (x1, y1) (x2, y2) (x3, y3) (x4, y4).

Output Format

For each test case, print out all of the following on a single line:
Case 1i: Yes, it forms a cube or
Case i: No, it cannot form a cube

Sample Input

2

06006101101

I 02 o 2 1 A 4
Q1 1, 2 =12 0
1220 T 2 2 d- 2
21003 0 8 1, @& 1
30404131

/
00011110
102 21,2 0
2 002 1L 8 dy 3 0
212 2,3 2 3 1
30314114 -1
20 .22 O 8 10 13 =1

Sample Output
Case 1: Yes, it forms a cube
Case 2: No, it cannot form a cube

Problem F
Minimum Integer Combination
Input file: pfitxt

Problem Statement

Given a sequence of positive integers V[1],...,V[N] and a positive integer X, we
say X can be generated with V[i]’s if there exist integers C[1],...,C[N] such that X =
C[1T*V[1] +..+ C[N]*V[N]. The combination may not be unique. There is a fact :
X can be generated with V[1],...,V[N] if and only if X is a multiple of the greatest
common divisor of V[i]’'s. Among all the possible combinations, we are interested in
the one with |C[1]] +...+|C[N]| minimized (i.e., minimize the sum of absolute values of
C[i]’s). For example, let X=4 and V[1]=3, V[2]=5. Then we can represent 4 as -2*3
+ 2*5, which has |-2|+]2| = 4 and achieves the minimum.

In this problem, given N, X and V[i]’s, you are asked to write a program to
calculate the smallest possible |C[1]] +...+|C[N]].

fa T—IEEEEG V1] ... VNI K—IFEE X WISREE —8#5 C[1] ... »
CINJBERG x=C[11*V[1]+.. +C[N]*V[N], AU X "Ll Lt V{ilEd: - 8 1
ALAYAE AL IEME— - £B7R © X WILAEE V1] > ... 0 VIN]ZEA - 35 HMEs X 2
V[i] X GCDWfE# - TEFTENFIEEE S » BRITRERLE —EE » 15
|CLT][+.. . HC[N]R#E S B g /)N - a0 3% X=4 H V[1]=3 - V[2]=5 - HI{KFTE
F-2%342%5=4 > {H15)-2|+)2]=4 FUER/) -

FEAREF > faF N X RS V] > B8 20K H(C]1+.. . +HCN]]
i} ANIER

Input File Format

The first line of the input file contains an integer N, 1< N <10, indicating the
number of test cases. There is a single line containing a ¢/ character separating two
consecutive test cases. The last line of the input file contains a *.” character denoting
the end of the input file. For each of the test cases, there is one line that shows the
values of N, X and V[1],, V[N], where N <200, X < 10000 and each V[i] < 10000.
Note that in the file we use space to separate the numbers. The last line of the input
file contains a “.” character denoting the end of the input file.

Output Format

For each test input, the output contains a line with the minimum sum as
described above.

Sample Input

3

2 122 4

/

2 435

/i

5 1.3 4 5 I8

Sample Output
1

4
2

